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Abstract 
 
Particle swarm optimization (PSO) and differential evolution (DE) have their similarities and compatibility in the de-

sign update process, such that a new design vector is determined by using neighborhood designs under algorithm con-
trol parameters. The paper deals with an integrated method of a hybrid PSO (HPSO) algorithm combined with DE in 
order to refine the optimization performance. PSO and DE also possess common characteristics compared with genetic 
algorithm (GA). The crossover- and mutation-like operators are suggested in the HPSO. A bounce back method is also 
implemented to prevent the design from locating out of design spaces during the optimization process. For the purpose 
of further enhancing the search capabilities, such HPSO is combined with the Q-learning that is one of efficient rein-
forcement learning methods. Using a number of nonlinear multimodal functions and engineering optimization prob-
lems, the proposed algorithms of HPSO and HPSO with Q-learning are compared with PSO, DE and GA. 
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1. Introduction 

Particle swarm optimization (PSO) [1] has been 
developed as one of the efficient global optimization 
tools. It has distinct characteristics such that the de-
sign variable is represented by the particle in a swarm 
and considered as continuous variable, while the de-
sign variable that corresponds to a chromosome in 
genetic algorithm (GA) is discrete. PSO is easy to 
implement with a small number of algorithm control 
parameters compared with GA as well. There has 
recently been considerable attention given to PSO for 
mechanical and structural design optimization [2-5]. 
The design update in PSO is available by using a 
neighborhood and previously obtained best designs. 
Such an update method is similar to that in differen-

tial evolution (DE), which is also one of the easily 
implemented global optimization techniques [6-9]. A 
new design in the DE process is determined by using 
randomly selected two position vectors and the best 
design found within the current generation. 

Based on the compatibility between PSO and DE, 
the present study proposes a method of hybrid PSO, 
so-called HPSO that combines the design update for-
mula adopted from both PSO and DE. Some of the 
algorithm control parameters used in PSO and DE are 
also similar to operators used in GA as well. The 
comparison of PSO with DE and GA is summarized 
in Table 1. One can find the similarities and differ-
ences among three optimization algorithms in terms 
of type of design parameters and method of design 
update. The present study develops an integrated 
method of HPSO and compares its optimization per-
formance with traditional PSO, DE and genetic algo-
rithm [10, 11]. There have been a number of studies 
in the comparison and combinations of PSO and DE,  
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Table 1. Comparison PSO with other algorithms. 
 

 PSO DE GA 

Particle Position vector Chromosome

Continuous Continuous Discrete 
Design 

parameters 
Swarm Population Population 

Design 
update 

Neighbors & 
previous design

Crossover & 
Mutation 

Crossover & 
Mutation 

Learning 
from 

Global best & 
local best Local best Reproduction

 
[12-16] where PSO and DE are separately operated or 
control parameters in one algorithm are simply added 
to the other. The present study suggests an integrated 
approach that includes PSO and DE algorithms in the 
whole process. 

A conventional optimization process would be 
normally conducted with predetermined values of 
control parameters such as crossover and mutation 
values. The search capability can be improved if con-
trol parameters are adaptively selected according to 
the progress of optimization results; a better design 
solution could be obtained with a variety of control 
parameter values. The present study employs the Q-
learning technique [17] in order to intelligently select 
control parameters during the HPSO process, thereby 
enhancing the optimization result. Using a number of 
nonlinear multi-modal functions and engineering 
optimization problems, the proposed algorithms of 
HPSO and HPSO with Q-learning are compared with 
conventional PSO, DE and GA. 
 

2. Optimization algorithms 

2.1 Particle swarm optimization 
Particle swarm optimization (PSO) is one of the 

global optimization algorithms that works with a few 
of the control parameters used in the design update 
behavior. Suppose a swarm of particles: the position 
of a particle is represented by k

ix ( 1,...,i n= ), where 
n  is the number of particles in the k-th generation of 
the swarm. In PSO, such a value is updated to a new 
position, 1

k
ix +  as follows [1]: 

 
1 1

k k k
i i ix x v+ += +  (1) 

1 [ (0, ) ( )k k k k
i i i iv v rand AC p xχ+ = × + × −  (2) 

(0, ) ( )]k
g irand AC p x+ × −  

 
where, 1

k
iv + is a new velocity vector calculated from 

the current values ( k
ix and k

iv ) and a number of con-

trol parameters such as χ  and AC. The design value, 
k
ip  is the ‘local best’ obtained during the k-th gen-

eration of the swarm, while the design, gp  is the 
‘global best’ found among all the particles in the 
swarms up to the current generation. Such a global 
best is replaceable whenever the fittest design is 
found at the new generation of the PSO process. The 
design k

ip  or gp  is to PSO as the elitist is to GA. 
The two above equations imply that a new design is 
searched toward the global optimum by using the 
velocity vector that is explored based on both the 
local and global bests. Thus, the design update in 
PSO is conducted via the learning from neighbors and 
previous design. 

 
2.2 Differential evolution 

Differential evolution (DE) is also one of global 
optimization algorithms that progressively searches 
for the updated design based on the following equa-
tions [8, 18]: 

 
1

k k
i ix x+ =    for (.)rand CR<  (3) 

1
k k
i ix v+ =    otherwise 

1 2( )k k k k
i best r rv x x xφ= + × −  (4) 

 
where, CR is the crossover ratio that decides the 
threshold of the design update. The velocity vector-
like value, k

iv  is determined by using randomly se-
lected two position vectors, 1 2,k k

r rx x  and the best de-
sign, k

bestx , found within the current generation. Since 
two position vectors are selected at random, they 
function as a mutation operator. A parameter, φ , 
ranging between 0.0 and 1.0 is used for the relaxation 
of the design. It is noted that k

bestx  in DE is very simi-
lar to k

ip  in PSO. However, DE does not adapt the 
design from the ancestors. 

 
2.3 Drawback in PSO 

The unconstrained Rastrigin’s function with 10 de-
sign variables in Eq. (5) is tested by using a conven-
tional PSO. 

 

1

( ) sin( | |)
n

i i
i

f x x x
=

= − ⋅∑ , (5) 

500 500, 1,...,10ix i− ≤ ≤ =  
 
The function minimization is conducted ten times 

with different random seeds as initial particles of a  
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Fig. 1. Rastrigin’s function and design histories by PSO. 
 
swarm, and their results are shown in Fig. 1. There 
detect the considerable numerical oscillations without 
any convergence [16, 19, 20]. Such phenomena come 
from the fact that designs are selected out of the de-
sign boundaries (i.e., design space) due to the random 
number term, (0, )rand AC  in Eq. (2). That is, by 
combining Eq. (2) with Eq. (1), the updated design, 

1
k
ix +  could be located outside the design space. Now, 

it is necessary for PSO to search the design within the 
defined design space, thereby inducing design con-
vergence. 
 

3. Proposed method 

3.1 Another PSO 

Another version of PSO is expressed with the fol-
lowing equations [1, 5]: 

 
1 1

k k k
i i ix x v+ += +   (6) 

1 1 (.) ( )k k k k
i i i iv v c rand p xχ+ = × + × × −   (7) 

2 (.) ( )k
g ic rand p x+ × × −  

if max
k
iv v> , then max

k
iv v=   (8) 

if max
k
iv v< − , then max

k
iv v= −  

 
where, the algorithm control parameters of 1 2, ,c cχ  
in Eq. (7) are introduced instead of , ACχ  in Eq. (2). 

The conditions of Eq. (8) are the limits on the over-
positioned design that are described in an earlier sec-
tion. 

 
3.2 Hybrid PSO 

PSO and DE have their compatibility in the design 
update process such that a new design vector is de-
termined by using neighborhood designs under algo-
rithm control parameters. The present study suggests 
a new method combining PSO with DE, the so-called 
hybrid PSO (HPSO). The main part of the proposed 
HPSO algorithm can be written as follows: 

 
For (.)rand CR<  (9) 

1 1
k k k
i i ix x v+ += +  

1 1 (.) ( )k k k k
i i i iv v c rand p xχ+ = × + × × −  

2 (.) ( )k
g ic rand p x+ × × −  

For (.)rand CR> , 1 2( )k k k k
i i r rv p x xφ= + × −  

       For (.)rand MR< , 1
k k
i ix x+ =  

       For (.)rand MR> , 1
k k
i ix v+ = . 

 
The above algorithm employs the same control pa-

rameters that are used in both PSO and DE. The 
HPSO process is conducted first according to the 
crossover ratio, CR, whether PSO or DE is activated. 
The sub-process of PSO is formulated by Eq. (7) 
instead of Eq. (2). In the sub-process of DE, the de-
sign update is controlled by mutation ratio, MR. The 
sub-process of PSO does not require MR since such 
operation is replaced by two terms of 1 (.)c rand×  
and 2 (.)c rand× . 

 
3.3 Bounce back 

When a particle keeps moving to another position, 
it may reach outside of the design boundary so that 
the numerical oscillation and consequent divergence 
of design solutions occur. The present study proposes 
a method such that the over-positioned particle should 
be bounced back within a specific region, the so-
called resolution region. That is, such ‘bounce back’ 
facilitates particles to be relocated into the design 
boundary. The condition for the bounce back is as 
follows: 

 
If max( )k

ix x>  then   (10) 

max [ (.) (1.0 )]k
ix v BB rand BB= × + × −  
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Fig. 2. Bounce back. 
 

 

Fig. 3. PSO without bounce back. 
 

 

Fig. 4. PSO with 20% bounce back. 
 

 

Fig. 5. PSO with 10% bounce back. 

 

Fig. 6. PSO with 5% bounce back. 
 
where, the bounce back parameter, BB ranging be-
tween 0 and 1 is used. The maximum limit on the 
distance movement is also imposed by a factor, maxv . 

It is noted that the condition of Eq. (8) is slightly 
modified as Eq. (10). This method may cause a reduc-
tion in the search speed and the loss of diversity in 
global optimization. However, the resolution regions 
obtained from Eq. (10) are near design boundaries as 
shown in Fig. 2. In a case where the optimal solution 
is to be located close to design boundaries, this 
method is helpful. 

A PSO-based numerical experiment for the bounce 
back is conducted by using Ackley’s function as 
shown in Figs. 3 to 6. Each result is obtained with 
three to five different random seeds as initial particles. 
The result with the bounce back ratio of BB=20% in 
Fig. 4 gives the best performance. The solution con-
vergence with BB=20% is quite independent of the 
initial swarm, while other results still depend upon the 
bounce back ratio. 
 

4. Hybrid PSO with reinforcement learning 

4.1 General description 

Reinforcement learning (RL) is an intelligent 
machine learning technique dealing with how an 
agent takes actions under a certain environment so as 
to maximize some notion of long-term reward. RL 
aims to find the optimal policy that maps states to the 
actions the agent should take in those states [21]. In 
the context of RL, the Q-learning works with incom-
plete information Markovian action problems based 
on the action value function Q that maps state-action 
pairs to expected returns. Q-learning successively 
improves its evaluations of particular actions at par-
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ticular states. An agent conducts an action at a par-
ticular state and evaluates its performance in terms of 
the reward or penalty received from the policy and its 
corresponding state value. The aim of the agent is not 
merely to maximize its instantaneous reward in the 
current state, but to maximize the cumulative reward 
received during the overall period of time. 

The search with an updated velocity vector in 
HPSO is dependent upon the selection of control 
parameters such as 1 2, , , , ,c c CR MRχ φ  and BB. The 
ordinary HPSO process would be performed with 
given values of control parameters. The motivation 
behind the HSPO with Q-learning is to increase the 
search capabilities via adaptively selecting such con-
trol parameters based on the Q-learning techniques. 
The subsequent section discusses how the HPSO is 
implemented with Q-learning process. 

 
4.2 HPSO with Q-Learning 

A particle in HPSO moves to a new position  
based on the local best ( k

ip ), global best ( gp )    
and difference between randomly selected two vec-
tors of  1 2

k k
r rx x− under control parameters such as 

1 2, , , , , ,c c CR MR BBχ φ  as shown in Eqs. (9) and (10). 
The present study considers such three values as the 
three-dimensional state since they are the most effec-
tive decision parameters that influence the new veloc-
ity and position of a particle. Three components of the 
state are as follows: 

 
1

k k
i is p x= −  (11) 

2
k

g is p x= −   (12) 

3 1 2
k k
r rs x x= −   (13) 

 
A Q-table is used to match the relation between the 

three-dimensional state, ( 1 2 3, ,s s s ) and three actions, 
(MR, CR, BB) out of seven control parameters. In a 
case where an agent begins to participate into Q-
learning, it chooses action parameter values, and 
works with the policies (i.e., HPSO algorithm). Each 
of three cells in action has three levels in the present 
study so that a total of 3 3 3× ×  cells are used for a 
particle. After a new design and its corresponding 
fitness value of the optimization problem are obtained, 
the Q-table is then evaluated as to whether its values 
receive the reward according to the new state. 

For the initialization and updating of the Q-table, 
the following normalization conditions should be 
satisfied [17]: 

  
Fig. 7. Process of HPSO with Q-learning. 

 
For state 1 2 3, ,s s s  and action: CR, MR, BB (14) 

( , ) 1k

action

Q state action =∑ . 

 
The Q-table values are initially set to equal one for 

all agents, and the reward assignment is then con-
ducted in this approach. After the HPSO with Q-
learning, the values of a cell according to the appro-
priate state and action are changed by using Eq. (15). 

 
1 2 3( : , , , : , , )kQ state s s s action CR MR BB =  (15) 

1
1 2 3

1 1( : , , ) ( ( ) ( ))
2 2

k k k
i iQ state s s s f x f x R++ − +  

 
where, R is a positive value of ‘reward’ which is to be 
added to the current Q-values in a case where when 
the selected action parameters outperform the best 
design of the whole swarm. The unconstrained or 
constrained objective function value at k

ix is repre-
sented by ( )k

if x . All of cells in the Q-table should be 
normalized every learning process. The next proce-
dure is to select the rule (i.e., HPSO algorithm of Eq. 
(9)) parameters for the update movement. HPSO pa-
rameters for an agent are selected according to its Q-
table. In the process of HPSO with Q-learning, three 
action components are renewed for each of the indi-
vidual particles. 

The overall process of HPSO and HPSO with Q-
learning is shown in Fig. 7, wherein HPSO using Eqs. 
(9) and (10) and the additional Q-learning with Eqs. 
(11) to (15) are identified. 
 

5. Results of example problems 

The proposed optimization strategies are examined  
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Table 2. Control parameter conditions. 
 

  
PSO 

 
DE 

 
GA 

 
HPSO 

HPSO with 
Q-learning

# of gen-
erations 1000 1000 1000 1000 1000 

Population 
size 50 50 50 50 50 

Crossover 
(or CR) - 0.2 0.8 0.2 0.2~0.3 

Mutation 
(or MR) - - 0.05 0.5 0.4~0.6 

Bounce 
back ratio 20% 20% - 20% 10~20%

Others χ=0.729 
AC=2.07 

φ=0.5
CR=0.2

- 

C1=1.5 
C2=1.5 
χ=0.729 
φ=0.2 

C1=1.5 
C2=1.5 
χ=0.729
φ=0.2 

 
with three uni-modal/multi-modal function mini-

mization problems and a few engineering optimiza-
tion problems. Control parameters used in each of 
optimization algorithms are shown in Table 2. 

 
Sum of different power function (F1) 

1

1

( ) | |
n

i
i

i

f x x +

=

=∑  (16) 

1.0 1.0, 1,...,10ix i− ≤ ≤ =  

 
Rastrigin’s function (F2) 

1

( ) sin( | |)
n

i i
i

f x x x
=

= − ⋅∑   (17) 

500 500, 1,...,10ix i− ≤ ≤ =  
 
Ackley’s path function (F3) 

2

1( ) 20exp( 0.2 )

n

i
i

x
f x

n
== − −
∑

 (18) 

1

cos(2 )
exp( ) 20 exp(1.0)

n

i
i

x

n

π
=− + +
∑

 
32.768 32.768, 1,...,10ix i− ≤ ≤ =  

 
The above three functions with 10 design variables 

have their global optima at 0.0ix =  in common. 
Even though Rastrigin’s function and Ackley’s path 
function present the nonlinear multimodality, the 
present study locates the global optimum. 

Three-bar planar truss (F4) 
A well-known 3-bar planar truss structure is con-

sidered. The design objective is to determine the op- 

Table 3. Results of three-bar truss problem. 
 

 
 

PSO 
 

DE 
 

GA 
 

HPSO 

HPSO 
with Q-
learning

X1 0.83 0.84 0.83 0.83 0.81 

X2 0.33 0.35 0.33 0.34 0.32 

W(X) 15.3 15.3 15.3 15.2 15.1 

 

P P

A3=A1A1
A2H

H H

  
Fig. 8. Three-bar planar truss. 
 
timal cross sectional areas, X1 and X2 , by minimizing 
the total weight (W) of a statically loaded three-bar 
planar truss subjected to stress (σ) constraints on each 
of the truss members together with the upper limit of 
tip deflection (δ). A schematic is shown in Fig. 8 and 
the mathematical statement of this optimization prob-
lem [22] is written as follows: 
 

Minimize   1 2( , )W X X  (19) 
subject to   1 1 2( , ) 20upperX Xσ σ≤ =  

2 1 2( , ) 20upperX Xσ σ≤ =  

3 1 2( , ) 15lowerX Xσ σ≥ = −  

max 0.2δ δ≤ =  

1 20.1 , 5.0X X≤ ≤ . 
 

Optimization results for the three-bar truss problem 
are compared in Table 3 and Fig. 9. Most of optimiza-
tion methods successfully locate the near optimal 
solution as shown in Table 3. Especially, the PSO 
with Q-learning provides the smallest level of nu-
merical oscillation during convergence as shown in 
Fig. 9. 
 

Piston lever (F5) 
The design objective of this problem is to locate the 
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Table 4. Results of piston oil problem. 
 

  
PSO 

 
DE 

 
GA 

 
HPSO 

HPSO with 
Q-learning

x1 133.3 129.4 250.0 135.5 134.7 

x2 2.44 2.43 3.96 2.48 2.51 

x3 117.14 119.80 60.03 116.62 118.47 

D 4.75 4.75 5.91 4.75 4.61 

f(x) 970.16 968.80 1059.20 974.79 923.97 

 
piston components, x1, x2, x3, and D by minimizing 
the oil volume when the lever of the piston is lifted up 
from 0deg to 45deg as shown in Fig. 10 [23]. The 
formal optimization statement is given as follows: 
 

Minimize   2
1 2 3

1( , , ) ( )
4

f x x x D b aπ= −  (20) 

Subject to   cos 0 45degQL RF atθ θ− ≤ =  
                3 max( ) 0Q L x M− − ≤  
                 1.2( ) 0b a a− − ≤  
                 2/ 2 0D x− ≤  

         3 3 1 1 2 3
2 2

3 2 1

| ( sin ) ( cos ) |
( )

x x x x x xR
x x x

θ θ− + + −=
− +

 

2 / 4F PDπ=  
2 2

3 2 1( )a x x x= − +  
0 2 0 2

3 1 2 3( sin 45 ) ( cos45 )b x x x x= + + −  

1 2 30.05 , , 500, 0.05 120x x D x≤ ≤ ≤ ≤  
 

where, the payload is Q=10,000lbs, the lever is 
L=240in, the maximum allowable bending moment of 
the lever is 6

max 1.8 10M lbs in= × ⋅ , and the oil pres-
sure is given as 1,500psi. A number of inequality 
constraints are imposed--force equilibrium, maximum 
bending moment of the lever, minimum piston stroke-
-and geometrical conditions are considered. 

Similar trends in the results of the piston oil prob-
lem can be detected as shown in Fig. 11 and Table 4. 
The PSO with Q-learning approaches to the opti-
mized solution at the earliest generations with the 
smallest numerical oscillation. HPSO is moderate, 
and a conventional PSO is the worst among them. 

The performance of each of the algorithms is also 
summarized in terms of the number of function 
evaluations as shown in Table 5. Each of the example 
problems are run 20 times to obtain the statistical 
results. In most of the example problems, HPSO with 
Q-learning and HPSO demonstrate remarkable per- 

15

17

19

21

23

25

1 11 21 31 41 51
Number of generations

O
b
je

c
ti
ve

PSO PSO with Q-learning PSO

  
Fig. 9. Convergence history of three-bar truss problem. 
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Fig. 10. Piston oil problem. 
 
formance in terms of mean and standard deviation 
(SD) of the number of function evaluations. It is 
noted that the function, f2, turns out to be prematurely 
converged (PC), that is, fails to locate the optimal 
solution when PSO, DE and GA are used. 
 

6. Closing remarks 

The paper explores an integrated hybrid PSO 
(HPSO) algorithm combined with the DE process in 
order to refine the optimization performance. To fur-
ther increase the search capabilities, the proposed 
HPSO is combined with the Q-learning so as to adap-
tively select the algorithm control parameters. Opti-
mization results are examined by using PSO, DE, GA, 
HPSO and HPSO with Q-learning. The proposed 
optimization strategies are examined with a number 
of uni-modal and nonlinear multi-modal function 
minimization problems and engineering optimization 
problems. The PSO with Q-learning provides the best 
optimum, and its result gives the smallest level of 
numerical oscillation during convergence. The PSO 
with Q-learning also generates the optimized solution 
at the earliest generations with the smallest numerical  
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Table 5. Number of function evaluations. 
 

 
Problem 

 
PSO 

 
DE 

 
GA 

 
HPSO

HPSO with 
Q-learning

Max 158 86 102 53 36 

Min 98 60 74 40 20 

Mean 131 60 74 40 20 
 

F1 

SD 21.4 9.3 14.8 4.2 5.9 

Max 615 518 

Min 478 215 

Mean 537 372 
 

F2 

SD 

 
PC 

 
PC 

 
PC 

49.9 111.5 

Max 462 223 102 113 

Min 356 181 83 137 

Mean 417 201 93 122 
 

F3 

SD 33.5 12.5 

 
PC 

6.2 8.3 

Max 42 53 52 41 60 

Min 37 36 37 17 31 

Mean 38 48 40 29 39 
 

F4 

SD 1.9 6.4 4.6 6.7 11.1 

Max 294 199 216 197 168 

Min 122 159 161 162 129 

Mean 166 187 185 187 151 
 

F5 

SD 51.7 14.2 18.2 13.4 13.4 

SD: standard deviation 
PC: Prematurely converged 
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Fig. 11. Convergence history of piston oil problem. 
 
oscillation as well. Such advanced methods present 
more reliable results in terms of the mean and stan-
dard deviation on the number of function evaluations. 
As further research in this context, it would be more 
valuable to adopt the various reproduction and cross-
over characteristics of GA into the proposed approach. 
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